Lecture 6 - 07/02/2017

The History of Message Authentication Codes

Clay Pots (8000 BC)

- A lot of ancient economies were debt based so during market excursions had to be secured by a signal that could not be tampered with

Cylinder Seal (3500 BC)

But, the above are physical authentication rather than informational authentication

WW2 era DRYAD authentication cipher

- The message itself is not secured, but the receiver is ascertained before the message can be read

Lecture

Alice sends a message to Bob

If Eve, an active aggressor, changes one bit of the message \rightarrow the decrypted message that Bob receives will be off by that one bit

While CTR may be great for Confidentiality, confidentiality is not the same as Authentication

$$\begin{array}{ccc} A_{K} & \longrightarrow \longrightarrow & B_{K} \\ t \ is \ a \ tag & m, \ t & I = ver \ (k, \ t, \ m) \\ t = MAC \ (k, \ m) \end{array}$$

Is this secure? MAC_K: $t \leftarrow MD5(k \parallel m)$

No, because of length extension T' = MD5 (k \parallel m \parallel m')

What do we want from a MAC:

• Correctness

• $\operatorname{Ver}_{K}(m, \operatorname{Mac}_{K}(m)) - 1$

• Security:

Ad $\begin{array}{ccc}
& \rightarrow \rightarrow \rightarrow & t = \{0,1\}^{L} \\
& m_{1}, m_{2}, \dots, m_{n} & L = 128 \text{ bits} \\
& \leftarrow \leftarrow \leftarrow repeat \\
& t_{1}, t_{2}, \dots, t_{n} & Pr \left[\text{Ver}_{K} (m^{*}, t^{*}) = 1 \right] \approx \frac{1}{2^{L}} \\
& \rightarrow \rightarrow & m^{*}, t^{*} \end{array}$

HMAC

Constraints opad and ipad where $opad \neq ipad$

 $t = H [k \oplus opad || H (K \oplus ipad || m)]$

What are opad and ipad?

Number of the length of the key

There's a scheme where you can choose keys smaller than opad and ipad Or the same key that when XORed with opad and ipad become different