Thursday, February 2nd

Methods of Attack

Schemes from Tuesday:

- OTP
 - o 1 bit encryption mode
- AES-CBC mode (plays the role of PRP)
 - o Arbitrary bit-length encryption mode

Possible attacks on an encryption:

- Key recovery
 - Most difficult attack
 - Adversary outputs the secret key
- Recovering the plaintext
 - Adversary outputs the plaintext
- Indistinguishability
 - Adversary chooses m_0 , m_1 , and challenger randomly selects one of these (with random bit b) and encrypts them, sending back $c_0 = enc(m_0)$ or $c_1 = enc(m_1)$
 - o Your scheme is "strong" if it can always protect against indistinguishability

KNOWN CIPHERTEXT ATTACK

- For indistinguishability, it's much more likely that the adversary will be looking at multiple encrypted messages c_2 , c_3 , c_n before sending m_0 , m_1 to the server
- So we want to protect our system from an adversary that is able to observe out ciphertext

CHOSEN PLAINTEXT ATTACK

- We want to be able to protect against Plaintext Security because it gives the adversary the most information.
- Note: m₀, m₁ may be queried during the learning phase
 - By defining security this way, we rule out any deterministic encryption scheme as satisfying CPA security
- In order to prevent the adversary from learning m₀, m₁ before attacking, we must make sure that even if the same message is being sent, it is sent with different outputs each time

EXAMPLE OF WHY THIS IS INSECURE

- Relies on the fact that if you send m₀ twice, you receive the same c₀
- So when you attack, send m₀ and m₁
 - o If $c^* = c_0$, then output o
 - o If not, then output 1
- The probability of winning is always 100%

Example of chosen plaintext attack:

- FBI is eavesdropping on your activity on Google
- FBI also owns an ad agency and they're telling you to "take a vacation in Florida"
- Since the FBI knows that Google is going to encipher your data, including the text "take a vacation in Florida", they know some of the plaintext being sent back

CHOSEN CIPHERTEXT ATTACK

Ranked ease of encryptions

- CCA (chosen ciphertext) [easiest for adversary]
- CPA (chosen plaintext)
- KPA (known plaintext)
- KCA (known ciphertext) [hardest for adversary]

The easier the attack is for the adversary, the more secure the system is if it is protected from that method of attack

Review of CVC mode

• If adversary can control the IV (because IV needs to be random) then CVC is vulnerable to attack

Counter mode

- If AES is a secure PRP, then AES-CBC mode is TND-CPA secure.
 - Note: have faith that AES is a secure PRP proof is long and covered in a Crypto class
- But, AES-CBS mode is not CCA secure

Malleability

- A scheme is malleable if you can alter bits in the ciphertext and still get valid text in the plain text
 - Doesn't have to be the same message it started with but it is something that could potentially be decrypted

 This is a malleable code because if you are able to flip one bit in the ciphertext, the plaintext is also altered

Ending Thoughts

- ALL schemes we've looked at so far are malleable, so they are not secure.
- How do we fix that??
- Tune in next week to find out.....