CS558 — Introduction to Network Security - 02/16/17
Scibe Notes: Arman Sanentz

Public Crypto

Message Authentication Core

e Here, the keys are symmetric:

e Each person has a public key, and uses these keys to securely communicate.
e Public Key: one computation and everyone will verify

Recap of MAC

A - B
K K

t = MAC(n) Accept if VER(m, t) = 1

Recap of MAC security

Adversary
m o
) t MACK() Cannot query m*
m,t -
 gors VER()

This is secure if for all adversaries:
if Prladversary wins] = Pr[VER(m*, t*) = 1] = 1/2!

|

m*, t* such that VER,(m*, t*) = 1

Digital Signature

A ne » B

Secret Key K, Public Key K,

0 = SIGNggcreT KEYA(m) Accept if VERpyg(c KEYA(m, o) =1

Note: The verification uses the
public key

To show correctness: VERpg(c KEYA(m, SIGNgecreT key (M)) = 1
A

Public Key Signatures

_ Note: The adversary knows
public key everything, except the secret key

!

\ 4

o SIGSECRET KEY() Cannot query m*

r

Adversary

This is secure if for all adversaries:
if Prladversary wins] = Pr[VER¢(m*, ¢*) = 1] = 1/2!

I

| = length of o

l

m*, o* such that VERPUBLlC KEY (m*, o*) =1

Public Key Encryption

A c

Public Key Kgos

ENCpypuickey (M)
BOB

Note: The Secret Key/Public Keys
are switched from the Digital
Signature model

How to Set Public Key Crypto?

e One way is using the RSA Function:

Prime numbers (big, 2048 bits) p & g < These are secret to everybody

n=p*q < RSA modules
e = encryption exponent

EASY:
(e, N, M) = [(to write an algorithm here)] = m® mod N

NOT EASY:

(e, N, y) = [(to write an algorithm here)] = m such that y = m®* mod N (essentially

ALSO EASY:

If you know the decryption exponent d:
d=e™ mod ¢(N) = (p-1)(g-1)
where ¢(N) = (p-1)(g-1)

B

Secret Key Kgos

< usually standardized (ex: e = 3)

Then you can solve: yGI mod N = m where m such thaty = m®mod N

DECsecrer KEYBOB(C) =m

“«e,

vy =m”)

A - o B

Y =ENCPUBLIC KEY BOB(m) DECSECRET KEY BOB(y) =m

PUBLIC KEY = (e, N)

Y =ENCpysiic KEYBOB(m) =memod N =y < textbook RSA encryption
= [PAD(m)]* mod N €< actually what is needed to serve
RSA encryption (see lab)

RSA Gen()=p, q, e < p and q are random 2048 bit integers
N=p*q
d = e mod (p-1)(g-1)
SECRET KEY =(d, N, p,) < keep secret
PUBLIC KEY = (e, N) < make public

To generate RSA keys, choose random p, q, fixed e
Output:

PUBLIC KEY = (N, e) whereN=P *e

SECRET KEY = (N, d) or (p, q)

Here, we are “implying that factoring is hard.”

Rabin Encryption Scheme

We are using prime numbers (big, 2048 bits) p & g

EASY:
p v N-p*gq
q—>
NOT EASY:
N ——>] P suchthatN=p*q
—_—
Alice:

DecsecreT kevlY) = yd mod N = message
PUBLIC KEY = (e, N)

