Public Crypto

Message Authentication Core

• Here, the keys are symmetric:

- Each person has a public key, and uses these keys to securely communicate.
- Public Key: one computation and everyone will verify

Recap of MAC

 $t = MAC_{\kappa}(n)$

Accept if $VER_{k}(m, t) = 1$

```
Recap of MAC security
```


m*, t* such that $VER_{\kappa}(m^*, t^*) = 1$

Digital Signature

To show correctness: $VER_{PUBLIC KEY_A}$ (m, $SIGN_{SECRET KEY_A}$ (m)) = 1

Public Key Signatures

m*, σ^* such that VER_{PUBLIC KEY} (m*, σ^*) = 1

Public Key Encryption

How to Set Public Key Crypto?

• One way is using the RSA Function:

Prime numbers (big, 2048 bits) p & q	← These are secret to everybody
n = p * q	← RSA modules
e = encryption exponent	← usually standardized (ex: e = 3)

EASY:

(e, N, M) \rightarrow [(to write an algorithm here)] \rightarrow m^e mod N

NOT EASY:

(e, N, y) \rightarrow [(to write an algorithm here)] \rightarrow m such that y = m^e mod N (essentially "^eVy = m")

ALSO EASY:

If you know the decryption exponent d: $d = e^{-1} \mod \varphi(N) = (p-1)(q-1)$ where $\varphi(N) = (p-1)(q-1)$

Then you can solve: $y^d \mod N = m$ where m such that $y = m^e \mod N$

To generate RSA keys, choose random p, q, fixed e

Output: PUBLIC KEY = (N, e) where N = P * e SECRET KEY = (N, d) or (p, q)

Here, we are "implying that factoring is hard."

Rabin Encryption Scheme

We are using prime numbers (big, 2048 bits) p & q

EASY:

NOT EASY:

N
$$\longrightarrow$$
 p such that N = p * q

Alice:

 $Dec_{SECRET KEY}(y) = y^d \mod N = message$ PUBLIC KEY = (e, N)