CS558 Scribe Notes
2/16/2017

Nicholas Mauro

Public Key Crypto

So far, we've been thinking about crypto symmetrically...

m, t

A

k

With this method, we’d need keys for every possible link. In a class of 60 students, 602

keys would be required for all students to be able to communicate with one another.

Instead, we can use public keys to establish secret keys:

m, o

A B

sk pkB

S

This is a “Digital Signature”
0 = Sigga(m) Accept if: Ver,,(m,o) = 1
- In this scenario, the secret key is held by the signer, and the public key is held by
the verifier.
- Think of the public key as the “King’s Stamp”, which all members of the kingdom
can recognize and verify comes from the king.

- Correctness: Ver,(m, Sigy(m)) = 1

Review of MAC (Message Authentication Code):

t = MAC,(m)

m* t*

Accept if: Ver,(m,t) = 1

—
=
g%:)
J

Oor1

MAC,()

Ver ()

s.t. Ver,(m*t*) = 1

MAC is secure if ¥V Adv(Pr[Adv Wins] = Pr[Ver,(m*t*) = 1]) = 1/2'

Lowercase L is the length of t

Cannot query m*

When using public and private keys. there is no verification oracle:

pk

Sig, ()

—
=

m-,g

- VAdv(Pr[Ver,(m*,c*) = 1]) = 1/2!

- Lowercase L is the length of o

- Cannot query m*

Public Key Encryption:

A B

pkB skB

S

Enc,g(m)=c Decyg(c) = m
- This does NOT provide authenticity!
How do we get pk crypto?
One way is RSA function:
- Take 2 big primes, 2048 bits, p and q
- N =p*qg = RSA modulus
- e =RSA encryption exponent
- Take m®* mod N

- For many years, e was always equal to 3

(e,N,m) |:> |::> me mod N

This is easy!

Ny)) msty=mmodN

- m “sort of” equals the e'" root of y

This is hard!

If you know the decryption exponent “d”, where d = &' mod ®(N),
where ®(N) = (p-1)*(g-1), you can take y* mod N = m,

with m s.t. y = m® mod N

RSA Encryption:

The following is “textbook” RSA encryption...
pkB = (e’N)
Enc,g(m) =m®mod N =y

Decyg(y) =m

The “real life” secure example looks more like this...

[PAD(m)]®* mod N

To generate RSA keys, choose random p and q, and find e
Output:

- pk =(N,e) where N = p*q

- sk=(N,d)or (p,q)

- “RSA function implies factoring is hard”

(D,CI) |:> |:> N= p*q

This is easy!

find pand q
N :> :> s.t. N =p*q

This is hard!

RSAGen()=p, q, e

- pand q are 2048 bit primes

d = e’ mod (p-1)*(g-1)
- Keep secret: sk =(d, N, p, q)
- Make public: pk = (e, N)
- Decrypt: ymod N Dec,,(Y)

- “Security of RSA rests on fresh moduluses”

