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Public Key Crypto 

So far, we’ve been thinking about crypto symmetrically… 

 

 

With this method, we’d need keys for every possible link. In a class of 60 students, 602 

keys would be required for all students to be able to communicate with one another. 

 

Instead, we can use public keys to establish secret keys: 

            This is a “Digital Signature” 

σ = SigskA(m)                                     Accept if: VerpkA(m,σ) = 1 

- In this scenario, the secret key is held by the signer, and the public key is held by 

the verifier. 

- Think of the public key as the “King’s Stamp”, which all members of the kingdom 

can recognize and verify comes from the king. 

- Correctness: Verpk(m, Sigsk(m)) = 1 



Review of MAC (Message Authentication Code): 

t = MACk(m)     Accept if: Verk(m,t) = 1 

s.t. Verk(m*,t*) = 1 

- MAC is secure if ∀Adv(Pr[Adv Wins] = Pr[Verk(m*,t*) = 1]) = 1/2l 

- Lowercase L is the length of t 

- Cannot query m* 

 

 

 

 



When using public and private keys, there is no verification oracle: 

 

- ∀Adv(Pr[Verpk(m*,σ*) = 1]) = 1/2l 

- Lowercase L is the length of σ 

- Cannot query m* 

 

 



Public Key Encryption: 

 

EncpkB(m) = c                           DecskB(c) = m 

- This does NOT provide authenticity! 

How do we get pk crypto? 

One way is RSA function: 

- Take 2 big primes, 2048 bits, p and q 

- N = p*q = RSA modulus 

- e = RSA encryption exponent 

- Take me mod N 

- For many years, e was always equal to 3 

This is easy! 

This is hard! 

- m “sort of” equals the eth root of y 

If you know the decryption exponent “d”, where d = e-1 mod Φ(N),  

where Φ(N) = (p-1)*(q-1), you can take yd mod N = m,  

with m s.t. y = me mod N 

 



RSA Encryption: 

The following is “textbook” RSA encryption… 

pkB = (e,N) 

EncpkB(m) = me mod N = y 

DecskB(y) = m 

 

The “real life” secure example looks more like this… 

[PAD(m)]e mod N 

 

To generate RSA keys, choose random p and q, and find e 

Output: 

- pk = (N,e) where N = p*q 

- sk = (N,d) or (p,q) 

- “RSA function implies factoring is hard” 

 

This is easy! 

 

This is hard! 



RSAGen() = p, q, e 

- p and q are 2048 bit primes 

 

d = e-1 mod (p-1)*(q-1) 

- Keep secret: sk = (d, N, p, q) 

- Make public: pk = (e, N) 

- Decrypt: yd mod N                      Decsk(y) 

- “Security of RSA rests on fresh moduluses” 

 

 

 

 

 


