
CS558 Scribe Notes

2/16/2017

Nicholas Mauro

Public Key Crypto

So far, we’ve been thinking about crypto symmetrically…

With this method, we’d need keys for every possible link. In a class of 60 students, 602

keys would be required for all students to be able to communicate with one another.

Instead, we can use public keys to establish secret keys:

 This is a “Digital Signature”

σ = SigskA(m) Accept if: VerpkA(m,σ) = 1

- In this scenario, the secret key is held by the signer, and the public key is held by

the verifier.

- Think of the public key as the “King’s Stamp”, which all members of the kingdom

can recognize and verify comes from the king.

- Correctness: Verpk(m, Sigsk(m)) = 1

Review of MAC (Message Authentication Code):

t = MACk(m) Accept if: Verk(m,t) = 1

s.t. Verk(m*,t*) = 1

- MAC is secure if ∀Adv(Pr[Adv Wins] = Pr[Verk(m*,t*) = 1]) = 1/2l

- Lowercase L is the length of t

- Cannot query m*

When using public and private keys, there is no verification oracle:

- ∀Adv(Pr[Verpk(m*,σ*) = 1]) = 1/2l

- Lowercase L is the length of σ

- Cannot query m*

Public Key Encryption:

EncpkB(m) = c DecskB(c) = m

- This does NOT provide authenticity!

How do we get pk crypto?

One way is RSA function:

- Take 2 big primes, 2048 bits, p and q

- N = p*q = RSA modulus

- e = RSA encryption exponent

- Take me mod N

- For many years, e was always equal to 3

This is easy!

This is hard!

- m “sort of” equals the eth root of y

If you know the decryption exponent “d”, where d = e-1 mod Φ(N),

where Φ(N) = (p-1)*(q-1), you can take yd mod N = m,

with m s.t. y = me mod N

RSA Encryption:

The following is “textbook” RSA encryption…

pkB = (e,N)

EncpkB(m) = me mod N = y

DecskB(y) = m

The “real life” secure example looks more like this…

[PAD(m)]e mod N

To generate RSA keys, choose random p and q, and find e

Output:

- pk = (N,e) where N = p*q

- sk = (N,d) or (p,q)

- “RSA function implies factoring is hard”

This is easy!

This is hard!

RSAGen() = p, q, e

- p and q are 2048 bit primes

d = e-1 mod (p-1)*(q-1)

- Keep secret: sk = (d, N, p, q)

- Make public: pk = (e, N)

- Decrypt: yd mod N Decsk(y)

- “Security of RSA rests on fresh moduluses”

