CS558 Scribe Notes
2/16/2017

Nicholas Mauro

Public Key Crypto

So far, we've been thinking about crypto symmetrically...

With this method, we'd need keys for every possible link. In a class of 60 students, 60^{2} keys would be required for all students to be able to communicate with one another.

Instead, we can use public keys to establish secret keys:

$$
\sigma=\operatorname{Sig}_{\text {skA }}(\mathrm{m}) \quad \text { Accept if: } \operatorname{Ver}_{\text {pkA }}(\mathrm{m}, \sigma)=1
$$

- In this scenario, the secret key is held by the signer, and the public key is held by the verifier.
- Think of the public key as the "King's Stamp", which all members of the kingdom can recognize and verify comes from the king.
- Correctness: $\operatorname{Ver}_{\mathrm{pk}}\left(\mathrm{m}, \operatorname{Sig}_{\mathrm{sk}}(\mathrm{m})\right)=1$

Review of MAC (Message Authentication Code):
$t=\operatorname{MAC}_{k}(m) \quad$ Accept if: $\operatorname{Ver}_{k}(m, t)=1$

s.t. $\operatorname{Ver}_{\mathrm{k}}\left(\mathrm{m}^{*}, \mathrm{t}^{*}\right)=1$

- $\quad M A C$ is secure if $\forall \operatorname{Adv}\left(\operatorname{Pr}[\operatorname{Adv}\right.$ Wins $\left.]=\operatorname{Pr}\left[\operatorname{Ver}_{k}\left(m^{*}, t^{*}\right)=1\right]\right)=1 / 2^{\prime}$
- Lowercase L is the length of t
- Cannot query m*

When using public and private keys, there is no verification oracle:

- $\left.\quad \forall \operatorname{Adv}\left(\operatorname{Pr}_{[\operatorname{Ver}}^{\mathrm{pk}}\left(\mathrm{m}^{*}, \sigma^{*}\right)=1\right]\right)=1 / 2^{\prime}$
- Lowercase L is the length of σ
- Cannot query m*

Public Key Encryption:

- This does NOT provide authenticity!

How do we get pk crypto?
One way is RSA function:

- Take 2 big primes, 2048 bits, p and q
- $\quad N=p^{*} q=R S A$ modulus
- e = RSA encryption exponent
- Take $\mathrm{m}^{\mathrm{e}} \bmod \mathrm{N}$
- For many years, e was always equal to 3

This is easy!

This is hard!

- m "sort of" equals the $e^{\text {th }}$ root of y

If you know the decryption exponent "d", where $d=e^{-1} \bmod \Phi(N)$,
where $\Phi(N)=(p-1)^{*}(q-1)$, you can take $y^{d} \bmod N=m$,
with m s.t. $y=m^{e} \bmod N$

RSA Encryption:
The following is "textbook" RSA encryption...
$\mathrm{pk}_{\mathrm{B}}=(\mathrm{e}, \mathrm{N})$
$\operatorname{Enc}_{\mathrm{pkB}}(\mathrm{m})=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{N}=\mathrm{y}$
$\operatorname{Dec}_{\text {skB }}(\mathrm{y})=\mathrm{m}$

The "real life" secure example looks more like this...
$[P A D(m)]^{e} \bmod N$

To generate RSA keys, choose random p and q , and find e
Output:

- $\mathrm{pk}=(\mathrm{N}, \mathrm{e})$ where $\mathrm{N}=\mathrm{p}^{*} \mathrm{q}$
- $\quad \mathrm{sk}=(\mathrm{N}, \mathrm{d})$ or (p, q)
- "RSA function implies factoring is hard"

This is easy!

This is hard!

RSAGen() $=\mathrm{p}, \mathrm{q}, \mathrm{e}$

- p and q are 2048 bit primes
$d=e^{-1} \bmod (p-1)^{\star}(q-1)$
- Keep secret: sk = (d, N, p, q)
- Make public: $\mathrm{pk}=(\mathrm{e}, \mathrm{N})$
- Decrypt: $\mathrm{y}^{\mathrm{d}} \bmod \mathrm{N}$ $\operatorname{Dec}_{\text {sk }}(\mathrm{y})$
- "Security of RSA rests on fresh moduluses"

