CS558-2/16/17

- Hacking of the 2016 Election Presentation
- Timeline
- June 2015: Cozy Bear Infiltrates DNC
- April 2016: Second Fancy Bear Attack
- July 2016: Wikileaks releases DNC emails/chats
- Cozy Bear: APT 29
- Emails that establish an encrypted communication with the target
- Targeted systems will then constantly communicate with the adversary's servers even after termination
- Fancy Bear: APT 28
- Spear-phishing through spoofed web domains
- Installs X-Agent onto the targeted system
- Does it point to Russia?
- Cyberstrike/JAR motivation for attribution
- Software linked back to Russia
- Public Crypto
- If Professor Goldberg wanted to talk with all of us in the class, she would need 60 different keys
- If each of the classmates wanted to talk to each other, we would each have to have our own separate keys
- Public crypto methods fixes this problem
- MAC Security Review

$\mathrm{m}^{*}, \mathrm{t}^{*}$ such that $\operatorname{VERk}\left(\mathrm{m}^{*}, \mathrm{t}^{*}\right)=1$
- Caveat: cannot query m*
- Adversary should not be able to win with probability higher than $\operatorname{Pr}\left[\operatorname{Verk}\left(m^{*}, t^{*}\right)=1\right]=1 / 2^{\wedge}$ length
- Alice (mac,tag) \rightarrow Bob
- $\mathrm{t}=\mathrm{MACk}(\mathrm{m}) \rightarrow \operatorname{Verk}(\mathrm{m}, \mathrm{k})=1$
- Digital Signatures (Public Crypto)

- $\quad 0=$ SIGNska(m)

Accept if VERpka(m, $\mathbf{O})=1$

- Public key held by verifier, secret key held by signer
- A sends his/her secret key and B receives the message along with a signed sigma
- Sigma allows the recipient to verify that the message is genuine
- Anyone who has the public key of A can decrypt A's message and verify that the message came from A
- Correctness: Verpk (m, Sigsk(m)) = 1
- RSA Encryption (Public Crypto)

- Allows a sender to send a message to a specific person or persons
- Sender A encrypts a message with the public key of B and sender B decrypts the message with their own secret key
- This way, B is the only one who can decrypt the message
- No way to verify the authenticity of Sender A
- How RSA works:
- $\mathrm{N}=\mathrm{pq}$, where p and q are primes
- e = encryption exponent

$$
\begin{aligned}
& \overbrace{e, N}^{\text {anickey }}, m) \rightarrow \square m^{e} \bmod N \\
& \operatorname{howd}(e, N, y) \rightarrow \square m \text { s.t. } y=m_{\text {ma }} N
\end{aligned}
$$

- Encryption: ENCpkb(m) $=m^{\wedge} \mathrm{e} \bmod \mathrm{N}$

$$
0=[\operatorname{pad}(m)]^{\wedge} \mathrm{e} \bmod \mathrm{n}
$$

- If you know the decryption exponent
- $d=e^{\wedge}(-1) \bmod \phi N$
- where $\phi \mathrm{N}=(\mathrm{p}-1)(\mathrm{q}-1)$
- $y^{\wedge} d \bmod N=m$
- Where m such that $y=m^{\wedge} e \bmod N$
- Public Key / Secret Key
- $\operatorname{Pk}(N, e)$
- $\operatorname{Sk}=(N, d)$ or (p, q)

