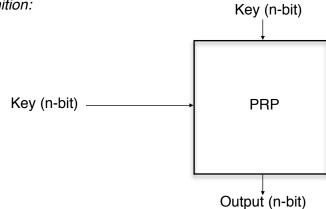
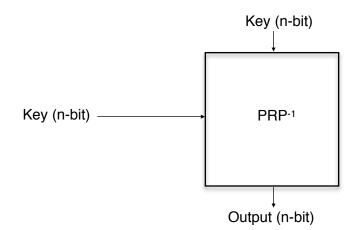

Lecture Scribe - Cyril Saade

Tuesday January 31st 2017

• Correctness of encryption scheme: Dec_k(Enc_k(m)) = m

RandomPerm⁻¹(RandomPerm(m)) ^ decryption ^ encryption




- Number of possibilities on n-bit input: 2ⁿ!
- Permutation is safer.

Pseudo-random permutation:

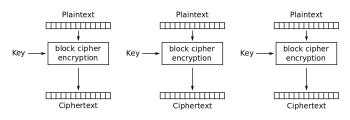
Belief: AES is a Pseudo-random permutation (PRP) - 128-bit security level which is considered good.

Definition:

Encryption Scheme for n-bit messages:

cipherText = $PRP_k(plainText)$ C = $Enc_k(m) = PRP_k(m)$

Example: Say key was 4-bits long - Can trivially break the encryption scheme -> Attack: for all possible keys k (2⁴=16 possibilities) PRP⁻¹_k(c) (stop when find a "valid looking" message)

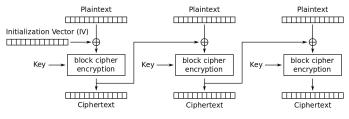

 $2^{n}!$ Possible permutations ~ $(2^{n})^{n}$ representing my choice of random permutation $\log_{2}(2^{n})^{n} \times n2^{n}$. Enough to stop brute force attacks.

AES: Pseudo-random Permutation:

Motivation: Attacker cannot distinguish between a world where we use AES, and another world where we use a Random Permutation. Explains the reason why AES is secure.

All of the techniques represent encryption schemes for an n-bit message. What techniques do we use in order to encrypt multiple messages?

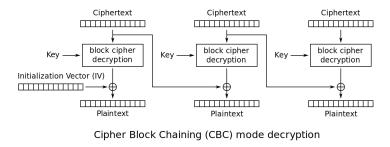
- <u>Electronic Codebook:</u> break a message into n-blocks, and apply a block cipher with same key to every block.
 - · Easily breakable: can apply frequency analysis. It is not secure enough



Electronic Codebook (ECB) mode encryption

Source: wikipedia

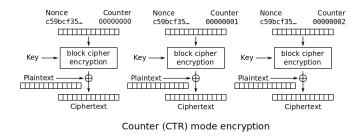
• Cipher Block Chaining (CBC):


1. Encryption

Cipher Block Chaining (CBC) mode encryption

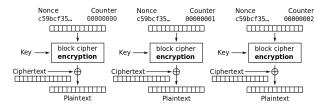
Source: wikipedia

2. Decryption


Source: wikipedia

Note: the initialization vector is exchanged as part of the ciphertext.

Counter CTR:


Nonce: fresh random number (should be unique -> very low probability of collision)

1. Encryption

Source: wikipedia

2. Decryption

Counter (CTR) mode decryption

Source: wikipedia