
CS	558	Lecture	1-26-2017	
	
Continuation	of	Encryption	
	

Review:	
• Schemes	-	how	we	do	encryption	and/or	decryption		
• Definition	of	what	it	means	to	be	secure(sometimes	use	to	

analyze	a	system)	
• Proof	that	the	scheme	satisfies	the	definition	

	
One	Time	Pad	(OTP)	for	one	bit	messages	is	an	example	of	a	scheme.	
	

	
k	=	key	
m	=	plain	text	message	
c	=	cipher	text	
such	that	
|k|	=	1	bit		
|m|	=	1	bit		
	
The	absolute	value	means	length	therefore	the	length	of	k	is	1	bit.	
	
Remember:	

	
	
	
	
	
	

Encryption:																																		Decryption:	
Enck(m)	=	k	⊕	m																									Deck(c)	=	c	⊕	k	
	
	
	

Alice								
k	

Bob										
k	

k	 m	 k	⊕	m	
0	 0	 0	
0	 1	 1	
1	 0	 1	
1	 1	 0	

Kerckhoff’s	Principle	
“Enemy	knows	your	system”	A	crypto	system	should	be	secure	even	if	
everything	about	the	system	is	public	except	the	secret	key.		
Ex)	in	the	OTP	everything	is	known	(the	algorithm	of	encryption	and	decryption)	
expect	the	key.			
	
We	should	make	systems	and	expect	the	system	to	be	secure	for	this	fact,	it	should	
be	secure	with	only	the	key	hidden.		
	
In	fact	if	you	should	want	everything	about	the	system	to	be	made	public	because	
1) we	don’t	want	a	system’s	security	to	rest	on	the	fact	that	others	don’t	
know	the	system(since	the	assumption	is	that	someone	can	figure	it	
out)	

2) 	we	want	experts	to	test	the	system	for	vulnerabilities	in	order	
strengthen	the	scheme.	

3) If	respected	cryptographers	fail	to	decrypt	the	schemes,	this	means	
the	system	will	be	widely	considered	to	be	secure	

	
	
If	we	use	OTP	“twice”	
ie)	c1	=	k	⊕	m1	
						c2	=	k	⊕	m2	

	
If	I	want	to	use	the	OTP	to	encrypt	an	n	bit	message	
	m	=	m1,	m2,	…..mn	

										↑																			↑	
			the	1st	bit							the	nth	bit			
	
You	should	choose	an	n-bit	random	key	
k	=	k1,	k2,……..	kn		
	
c	=	(m1	⊕	k1,	m2	⊕	k2,	……mn⊕kn)	
	
if	we	use	OTP	“more	than	once”	
																c1	=	k	⊕	m1	
																c2	=	k	⊕	m2	

	 .	
	 .	
	 .	
	 .	
			cn	=	k	⊕	mn	

Brute	force	–	trying	every	possible	key	
Consider	a	brute	force	attack	on	this	scheme.	How	many	keys	do	you	need	to	try?	
Answer:	only	2	tries	
	

Also:	what	happens	if	c1	⊕	c2	=	(m1	⊕	k)	⊕	(m2	⊕	k)	?	
																																																								=	m1⊕	m2⊕	k	⊕k					since	k	⊕	k	=	0	
									 	 	 	 	=		m1⊕	m2⊕	0	

	=		m1⊕	m2	
	
Why	is	this	a	problem?	

1) The	key	is	eliminated	which	is	where	the	randomness	should	be	coming	from	
2) Since	the	messages	have	structure,	it	is	vulnerable	to	attacks	using		

- knowledge	about	the	plaintext	
- frequency	analysis		

ex)	If	we	know	that	a	message	will	always	start	with	a	0,	you	can	use	the	
information	you	do	have,	to	solve	the	rest	of	the	message	that	is	unknown.	There	is	a	
good	example	of	this	in	the	film	The	Imitation	Game,	when	they	realize	the	same	
words	are	used	at	the	end	of	every	message.		
	
OTP	is	not	used	in	practice	because	you	could	not	feasibly	have	enough	storage	to	
secure	all	the	forms	of	communication.		
	
Most	schemes	that	are	used	in	practice	are	similar	to	OTP	and	shift	ciphers.	
	
Stream	Cipher	
	
Let’s	define	s	as	the	seed.	
	
	 Input																												 	 	 	 	 	 	 Output	
	
	
	
	a	randomly													 key	stream	=	
generated	seed	s		 spits	out	a																			
															 			 stream	of	bits	
																																														 ex:	01010….110	
	
	
	
Uniformly	random	128	bit	string	
(note:	there	are	2128	possibilities	for	S,	which	are	all	equally	likely)	
	
a	short	seed	is	passed	to	the	pseudo	random	generator	(PRG)	and	it	outputs	a	long	
key	stream	of	what	seems	like	a	randomly	order	bits.		
	
What	we	can	do	is	label	the	stream	of	bits		
0		1		1		0			1		0….	
k1	k2	k3	k4	k5	k6	
	
and	then	the	assign	the	appropriate	message	bit	to	the	appropriate	key	stream	bit.	
And	once	given	the	key	stream,	you	essentially	used	the	OTP	scheme	to	encrypt	the	
entire	message.	
	
c1	=	k1	⊕	m1	
c2	=	k2	⊕	m2	
:	
etc	
	

Pseudo	Random	
Generator	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
The	PRG	algorithm	is	deterministic	therefore	a	stream	of	s	will	be	the	same	every	
time.	The	randomness	comes	from	S	no	the	stream	the	PRG	algorithm	produces.		
Some	well	known	PRG’s	are	:	RC4,	Salsa,	Chacha	
	
If	the	key	stream	is	to	leak	the	scheme	would	also	fail.		
	
What	does	it	mean	for	something	to	look	random?	
	
Random	VS	Pseudo	Random	
				S	is	assumed	to	be	produced	randomly.	However	the	key	stream	that	the	PRG	
produced	based	on	S	is	pseudo	random	meaning	that	it	is	indistinguishable	from	a	
randomly	produced	bit	stream.	With	knowledge	of	the	seed,	the	key	stream	does	not	
look	random	because	you	can	just	plug	it	into	the	PRG	to	recover	the	key	stream.	
Outputs	only	look	random	if	s	is	random	and	unknown.		
(note:	We	assume	key	agreement	between	Alice	and	Bob	before	analyzing	schemes)	
	
Attacks	on	stream	ciphers	are	on	the	weaknesses	within	Alice’s	or	Bob’s	box.	We	
must	never	reuse	the	same	seed	and	therefore	key	stream	meaning	it	is	a	stateful.		
	
	

Alice	
s	

Bob	
s	

PRG	 PRG	S	
	 S	

	

k1	k2	k3…kn	 k1	k2	k3…kn	

⊕	 ⊕	

m1m2m3...mn	

m1m2m3...mn	 c1	c2	c3....cn	

c1	c2	c3...cn	

Security	Definition:	A	Good	PRG	is	secure	if	for	all	polynomial	time	adversaries	D	
play	the	following	game.	There	are	two	worlds	both	of	which	D	can	see	the	key	
stream	of	bits.	However	they	need	to	figure	out	if	they	are	in	the	world	where	they	
have	the	PRG	or	if	they	have	the	RG.	If	D	cannot	distinguish	between	which	world	
they	are	in,	this	is	a	good	PRG.		
	

	
Block	Cipher	
Pseudo	random	permutation	instead	of	a	stream,	it’s	a	permutation.	
	
Permutation	–	n!	where	all	outputs	have	a	distinct	and	uniquely	associated	input.	
For	example	the	following	is	a	permutation	
	
A												D	
	
B												E	
	
C												F	
	
But	the	following	is	NOT	a	permutation	because	E	has	both	A	and	B	as	possible	
inputs.	
	
A												D	
	
B												E	
	
C													
	
	
	
So	permutation	of	size	4	is	4!	
	

	

World	2	World	1	

S	
	

PRG	
RG	

1010011000…	
1001011000…	

	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	 	
	
	
	
	
	
	
	
	

	
	
	
Q:	How	many	random	permutations	do	we	have	here?	
A:	2128!	
	
	
	

PRP	Input	A	 Output	E	

k
e
y	

0000000…00	
0000000…01	
.	
.	
.	
1111111…11	

	

0000000…00	
0000000…01	
.	
.	
.	
1111111…11	

	

RP	2128	
inputs	 2128	

outputs	

<-128	bits->	 <-128	bits->	

k
e
y	

