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Going back to ancient times… 

Cryptography techniques have existed since then (but all of those techniques can be broken 
now). For now, we’ll be working on authentication and encryption in the coming weeks. 
 
If you want to send a secure message to someone – what’s the goal? 
Encryption – to make sure only the parties intended can read the message, providing confidentiality of 
the message itself. 
Authentication – providing confirmation that the message came from/for the intended person (often 
mixed up with “integrity”, even while both authentication and integrity are necessary) 

- Examples: ancient Egyptian seals on papyrus papers + a king’s wax seal on a roll of paper + your 
own signatures when you sign something 

Integrity, on the other hand, is to make sure that the message was unchanged en route to its intended 
parties. 
 
(Note: To ensure authentication and integrity – “Message Authentication Code” (MAC), or something 
called digital signatures are used.) 
 
Begin Goldberg’s “channeling” of 237… 

One of the oldest-known ciphers is called the “Caesar Cipher”, from Julius Caesar’s own time. 
Known as an example of a “shift cypher”, it’s an encryption technique that basically replaces each letter 
of a given message with the kth letter that occurs after the given letter’s position in the alphabet. 
 
Example:  

- “BR ZKR KBR PBRRNR” – the cipher text 
- How do we map the cipher text to the plain text? 
- Trial and error – can figure out that the ‘R’ in the cipher text actually corresponds to the letter 

‘E’ – meaning the shift in the alphabet is actually 13 positions forward in the alphabet (using 
modulo of course, to wrap around the end of the alphabet) 

- So, if we shifted every letter in the cipher text forward 13 positions in the English alphabet, what 
do we get as the plaintext message? 

- “HE ATE THE CHEESE” – the plaintext 
- In breaking the encrypted message this way, we’ve actually just committed a “plaintext 

recovery attack” 
 

Why was the above not very secure? Because you can already clearly see that ‘E’ is the most 
common letter in the English alphabet, and that so was ‘R’ in the example used above. This is known as 
“frequency analysis”, by figuring out how to correspond the given structure of the encrypted text to the 
structure of a known language. We began with this example as an introduction to thinking about what 
makes a “good” encryption scheme. 

 
 



In an encryption scheme, we have a “sender” and a “receiver” (typically always known as Alice and 
Bob, respectively). Consider a “symmetric encryption scheme” – where we have a secret key that is 
“symmetric”, in the sense that both Alice and Bob have the key. This key allows both Alice to encrypt a 
message, and Bob to decode the encryption. Now, we have the grounds for talking in formal definitions: 
 
Given: 

- Plaintext message m  
- Cipher text (i.e. encrypted message) c 
- Encryption function, dependent upon some variable k, that takes in a message and returns its 

encrypted version: Enck(m) = c 
- Decryption function, dependent upon some variable k, that takes in an encrypted message and 

returns its plaintext: Deck(c) = some message m’ (m-prime) 
o We denote m’ vs. m since we don’t know if the decryption was actually successful in 

recovering the plaintext of the original message 
- An encryption scheme must have both encryption and decryption functions (otherwise, what’s 

the point of encrypting something such that no one can recover it) 
 
We define an encryption scheme as having two properties: 1) correctness, and 2) security. 
Formally, we define “correctness” as such that Deck(Enck(m)) = m (that is, if we decrypt the cipher text  
c = Enck(m) returned from the encryption function that encrypted the original message m, we should be 
able to recover the original message m – so, m’ == m.) 
 
A hash function takes in an input space (of messages) that could be very large (like say a space of 23000 
combinations, that we call “3000-bit-string” messages). The input-space is 23000 possible messages, and 
a hash function will take any input message of 3000 bits in length and encode it/map to a smaller output 
space of, let’s say, 160-bit-string messages (so hash(some message of length 3000 bits) = some 
encrypted bit-string of length 160 bits). 
 
Another example: take the hash function SHA256 – 
Bit-strings of {0, 1}* (* = arbitrary length)  

(maps  to) 
Bit-strings of {0, 1}256  

In other words, SHA256 as a hash-function maps bit-strings of arbitrary length to bit-strings of 
length 256. For example, SHA256(“Sharon”) = some bit-string of length 256. So, SHA256 takes in an 
input of arbitrary length and maps it to an output space of 2256 possible bit-strings – such that each input 
maps to a unique (each possible input has a corresponding output in the output space), consistent 
(repeating the hash-function on a given input will always map to the same thing) output (since it is a 
function, by definition).  
 
However, by itself, a hash function cannot be an encryption scheme – simply because it’s impossible 
that every output maps to a unique input (given that the input space is larger than the output space). 
This is intuitive – because the input space is larger than the output space, you could encrypt a message 
given a hash function, but you cannot recover/decrypt the cipher text into the original message (i.e. 
decode the message, since the output bit-string you get could map to any number of possible messages 
in the input space). Thus, an encryption scheme must allow anyone who has the key to both encrypt a 
message and decode an encryption to recover the original message – this is an example of the 
“correctness” property. 
 



Intuition: given one example of an attack – plaintext recovery (given cipher text  learn plaintext) – 
then intuitively, there should be another type of attack someone could commit: key recovery (which is 
simply to learn key); furthermore, intuitively, key recovery seems like a harder task for an attacker than 
plaintext recovery. 
 
Another example of an attack: Cipher text distinguishability attack – given cipher c, decide if it 
corresponds to message m1 or m0 

The task: given an adversary A, who is asked to choose 2 messages, m1 or m0 (and m0 != m1), 
who then asks for the encryption cipher c of one of the messages, the adversary must decide which 
message (m1 or m0) was encrypted. 
The adversary asks for the challenger to choose a uniform random bit b (meaning that the bit could be 0 
or 1 with equal probability, akin to just flipping a coin), and the challenger sends back an encrypted 
cipher text c* = Enck(mb) (i.e., adversary doesn’t know which message m1 or m0 the challenger actually 
chose to encrypt – thus, from the perspective of the adversary, it is simply mb) – all the adversary has to 
do is choose the correct message that the challenger encrypted (adversary outputs b’ (b-prime), which 
may or may not equal the original bit b). This distinguishability attack, too, is easier to break than the 
key recovery.  
 

So far, we are building up to a definition that allows the following: an encryption scheme is 
considered “broken” if it cannot withstand any of a set of specified attacks. For A, the hardest task to 
break an encryption scheme is “key recovery”, and the easiest task is the “distinguishability attack”.  
From the viewpoint of security experts who want to build a secure system, we want to ensure that our 
encryption scheme is capable of preventing even the easiest, lamest attack, because if an attacker tries 
that attack and sees that it’s been covered by our system, it implies that harder attacks are also warded 
against. (Fun fact: SuperPhish was also a “key recovery” attack)  
 
(Note: To be clear, so far, we have the scheme itself, and the definition of security. The example so far of 
the distinguishability attack does not actually detail the scheme itself, but is only used to allow you to 
better understand the definition of security.) 
 
Another example to detail an actual encryption scheme: the one-time pad – an encryption scheme for 
just one bit 

- Require key k to be a random bit (so k as a bit = 0 w/ 50% chance, 1 with 50% chance) 
- Both Alice and Bob know k 
- Enck(m) (where the message passed into our encryption function, m, is also 1 bit in length) = 

(m⊕ k) = cipher text c 
 
Bit Table Review for ⊕ (XOR): 
k m (k ⊕ m) 
0 0 0 
1 0 1 
0 1 1 
1 1 0 
 

- Alice encrypts m to get encrypted message c, and sends that to Bob. 
- Conversely for Bob, in the one-time pad, Deck(c) = (c ⊕ k) = m  
- This demonstrates the “correctness” property – since Deck(Enck(m)) == m (can check that this is 

indeed the case) 



- As for the “security” property of the one-bit, one-time pad (“going back to a definition set by 
Shannon in the 1940’s”): for all adversaries, play this game with Pr*b’ = b+ = ½ (b-prime in that 
the adversary guesses a bit b’ that does or does not match the original bit the challenger chose 
to encrypt the message – mb from the adversary’s perspective) – this is to make it such that the 
adversary cannot do better than just guessing randomly 

 
So, we’ve identified an actual encryption scheme with the one-time pad – it is secure (because of 

the Pr*…+ = ½ proof to be demonstrated), and both correct, given the Deck(Enck(m)) == m – so it satisfies 
the properties specified by our definition of an encryption scheme. 
 
(Note: What makes the probability actually random in our example is due to the bit b and the key – 
randomness is over b and key k. But the messages themselves still have structure! So an encryption 
scheme is still bad if, for messages passed in (since actually choosing which messages to encrypt may 
not be, itself, random), the scheme then produces an encrypted cipher that still reveals some structure 
given the predictability of the chosen messages. A good encryption scheme supports a truly random 
probability if it’s still ½ even when the messages passed in share a lot in common. (An example is that, 
for war, if there were only ever like 3 messages that got sent, such as “Attack at dawn”, etc., etc., then 
your encryption scheme doesn’t matter much.)) 
 
Proof that one-time pad satisfies the “definition” of security (“cryptographically secure”): 
 
 Observe that k is a random variable: 

k = {1 with probability ½, 0 with probability ½} 
 By definition of one-time pad’s encryption scheme: 

Pr[ (k ⊕ m0) = c* ] = Pr[ Enck(m0) = c* ]  
(Here, k is a random variable from the perspective of an adversary; m0 is NOT a random variable 
since the adversary chose it; c* is NOT a random variable as well, since it depended upon m0 
which the adversary chose.) 

 The event that the challenger chose to encrypt message m0 with bit b = 0: 
Pr[ Enck(m0) = c* ] = Pr[ b = 0 ] 
(Or otherwise stated, the event that the adversary chose the correct message m0 that 
corresponded to the actual bit b = 0 that the challenger chose to encrypt m0.) 

 By simple algebra: 
Pr[ (k ⊕ m0) = c* ] = Pr[ (m0 ⊕ m0 ⊕ k) = (c* ⊕ m0) ] 
Pr[ (m0 ⊕ m0 ⊕ k) = (c* ⊕ m0) ] = Pr[ k = (m0 ⊕ c*) ] 

 
 Therefore, since k is a random variable, the probability that k = (m0 ⊕ c*) = ½ 

(No matter what the adversary does, no supercomputer, no algorithm, nothing short of breaking 
into the system and stealing the actual key, the probability that k = 0 or 1, based on the returned 
value of (m0 ⊕ c*) given to the adversary by the challenger, will always be ½.) 
 

To see why exactly, follow the same logic with bit b = 1: 
Pr[ b = 1 ] = (same logic as before) = Pr[ k = (m1 ⊕ c*) ] = ½  

– this shows that: 
Pr[ k = (m0 ⊕ c*) ] = ½ = Pr[ k = (m1 ⊕ c*) ], 

meaning the adversary can’t guess if either message 1 or 0 was the one encrypted, given c* – and thus, 
the adversary cannot guess with probability greater than ½, and hence has no information on what to do 
and must guess randomly. 



 
(Note: It’s called the “one-time pad” because you can’t use the same one-time pad key to encrypt 
different messages – if you did, you could automatically eliminate the key from the equation: 

Given cypher c1 = (m1 ⊕ k) 
Given cypher c2 = (m2 ⊕ k) 

If you simply:  
(c1 ⊕ c2),  

you get 
(m1 ⊕ m2) 

– and that means that if you have c1 and c2 and m1, you can figure out someone else’s original message 
m2. Thus, at least in the case of the one-time pad, you must use a unique key for every message you 
want to encrypt.) 


